Have some nano tech with your soap?
A nanomaterial created by MIT researchers acts like the main ingredient in soaps, shampoos and detergents. In addition to improving existing cleaning products, these nanostructures may have other chemical engineering uses for materials where traditional surfactants are used. Unlike lipids, it’s possible to modify these kinds of molecules so that it is easy for them to directly couple with inorganic nanocrystals, opening up a variety of possible applications in molecular electronics for interfacing organic, biological and inorganic materials.
Another advantage of studying glycine-based surfactant peptides is that glycine, aspartic acid and alanine are of particular interest to researchers studying early chemical and molecular life forms. These substances were thought to be present in the prebiotic environment of early Earth and in intergalactic dust.
Glycine is the simplest of the 20 naturally occurring amino acids and most likely to be the predominant amino acid several billion years ago. These amino acids or their derivatives can form polypeptides when subjected to repeated hydration-dehydration cycles, mimicking the conditions of early life on the planet. These simple biochemical building blocks could produce complex life forms over eons of natural selection and evolution.
If peptides consisting of any combination of these amino acids can self-assemble into nanotubes or vesicles, they would have the potential to provide a primitive enclosure for the earliest RNA-based or peptide enzymes. This would facilitate prebiotic molecular evolution by sequestering the rudimentary enzymes in an enclosed or semi-isolated environment.
Read more of the serious science at MIT.